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Summary

This report considers the errors that accompany
the application of the "Q-circle" method to res-
onators that are more complex than the simple
resistance-inductance-capacitance (RLC) circuit, for
which it was derived and is exact. The method is

based on determining the ratio of the center fre-
quency to the "intercept bandwidths" defined by the
Q-circle method.

Two lumped circuits and a distributed circuit
were analyzed using both symbolic and numerical
methods. It was concluded that the Q-circle method
can produce large errors or even fail completely,
especially when measuring the loaded Q, because
the impedance components of complex resonators
can differ significantly from those of simple RLC
resonators.

Introduction

It is an established practice to treat high-Q
lumped and distributed networks near resonance
as elementary three-element resistance-inductance-
capacitance (RLC) circuits. The widely used

"Q-circle" measurement procedure (ref. 1, p. 408) is
based on this assumption. It is shown here that this

assumption can lead to errors when measuring the
Q-factor of more complex resonators that are heav-
ily loaded by the external source.

In the Q-circle method, the resonator is assumed
to behave as a series (or parallel) RLC circuit and
the intercept frequencies are found experimentally for
which the components of impedance satisfy

and

IIm[Z] = Re[Z] (for Qu) (1)

[z]] = R0 + ae [Z] (for QL) (2)Im

where Re[Z] and Im[Z] are the real and imaginary
parts of impedance, respectively, and Qu and QL are
the unloaded and loaded Q-factors, respectively. The
Q-factor is then determined from

Q = wO/A_z (3)

where Aa; represents the frequency increments mea-
sured above and w0 denotes the resonant frequency.
Equation (3) will be shown to be exact for simple
series (or parallel) RLC circuits, regardless of the Q-
factor, but not for more complex circuits such as
in figure 1. This is shown to be due to the fact
that the impedance components of the circuit vary
with frequency differently from those in a pure series
RLC circuit, thus causing the Q-factor determined
by equation (3) to be in error.

Rp

C

(a) Parallel resonance.

Rp

•
(b) Series resonance.

C0

(e) Dual resonance.

Figure 1. Four-element resonant circuits.

Symbols

C capacitance

Ceq equivalent capacitance

Co shunt capacitance

Im [] imaginary part of []

Ip peak current

J symbolic representation of algebraic
expression

j imaginary operator

K ratio of pole-zero spacing to 3-dB
semibandwidth

L inductance

Leq equivalent inductance

e length

n order of _/2 resonance

P average power



L

Q

AQ

0

QL

QL

Qu

Quo

R

Re[]

Req

Ro

np

R_

t

Vp
W

ZA(_)

zn( )

ZBO

zc( )

F

5w

_R

_RO

Q-factor

deviation of measured Q from

actual Q

Q computed from wo/Aw

Q computed from phase slope and
resonant series resistance

loaded Q-factor

QL computed from Qu and f_c

unloaded Q-factor

series-arm unloaded Q-factor

resistance

real part of []

equivalent series resistance

source resistance

shunt resistance

series resistance

time

peak voltage

peak energy

series-arm reactance function

impedance function of circuit in

figure l(b)

impedance function of short-
circuited transmission line

characteristic impedance of trans-
mission line

impedance function of circuit in

figure l(c)

real part of complex propagation
constant

frequency-dependent a

imaginary part of complex propaga-
tion constant

coupling factor

complex reflection coefficient

pole-zero spacing

relative dielectric constant

low-frequency value of relative

dielectric constant in a dispersive

medium

A

T

O2

A_

w0

_Osd

o.,) sn

_2

wavelength

one-way propagation time

radian frequency

intercept bandwidth

resonant frequency

singular frequency of denominator

of Zc(w)

singular frequency of numerator of

Zc( )

positive intercept frequency

Re[Z(w)] = Im[Z(w)]

negative intercept frequency

(-ae[Z(w)] = Im[Z(w)])

Review: The Q-Factor of a Series RLC

Circuit

As a preliminary discussion and review, equa-

tion (3) is derived for a series RLC circuit having

the impedance function

( 1)Z(w) = ns + j wL- _-_ = ns + j X(w) (4)

The fundamental definition of Q is (ref. 1, p. 349)

Q = 2n (Peak energy stored) = w°--_W (5)
Energy dissipated per cycle P

where W is the peak energy stored and P is the aver-

age power dissipated during a period T. At a current

maximum, all stored energy is in the magnetic field
of L. When driven from a source resistance R0, QL

is given by

a_o(LI2p/2) _ woL (6)

n0+n 

which is well-known. The unloaded Q (i.e., Qu) is

found from equation (6) with R0 = 0. It follows that

Qu Rs + Ro _ I + RO
Q---L= ns Rs =l+_c

(7)

where the factor Ro/Rs, which is :designated the

coupling factor f_c in Q-circle terminology, is the ratio
sourceof power dissipated by the resistance R0 to

that dissipated by the resonant circuit. For a series

resonance, f_c is found by inverting the value on the



Smithchartwheretheresonantlocusintersectsthe
realaxis.

In the experimentaldeterminationof Q using

equation (6), R8 and w0 are measured directly at w0,
but L cannot be determined by a single-frequency

measurement at w0. The slope of the reactive part of

equation (4) (i.e., X(w)) at resonance is

dX(W)dw w=w° = 2L
(8)

The experimental determination of L is especially

easy for the reactance function X(w) in equation (4)
because it has the interesting and useful property

that the slope of all lines connecting points of equal

magnitudes and opposite signs always equals the

slope at resonance. That is,

2R _ dX(w) w=w0 = 2L_(n) - _(-n) d_
(9)

where w(+R) are the values of the inverse function

of X(w), that is, w(X), when IX] = R. Since

equation (9) is true for any value of R, it must be

true for R -- R0 + Rs; and thus QL (from eqs. (6),

(8), and (9)) is given as

Ro ÷ Rs 1

QL = _0(R0 + Rs) - _(-P_ - Rs) R0 + R_
(10)

which reduces exactly to equation (3). Thus, the

Q-circle method is exact for a series (or, by duality,

a parallel) RLC resonator.

Examples of Q-Circle Measurement
Error

The remainder of this paper considers the con-

sequences of applying equation (3) to lumped and
distributed element resonant networks for which the

Re [Z(w)] can vary with frequency and the reactance
functions do not satisfy equation (9), on which the

derivation of equation (3) and the Q-circle method

are based. Three examples are presented in the fol-

lowing discussion.

Example 1: Lumped Element Circuit

The circuit of figure 1 (a) was used in reference 1
to model the effect of coupling-circuit loss on the

Q-factor measured by the voltage standing-wave ra-

tio (VSWR) method (ref. 1, p. 413). The effect of the
added loss resistance on a Q-circle measurement is

carried out here for the circuit dual of figure 1 (a) and

is shown in figure l(b). Although the Q of the cir-

cuit is lower with Rp than without Rp, the Q-factors
computed from equation (3) will be shown to be less
than the correct values, as found from equation (5).

The impedance components of the circuit of fig-

ure l(b) are

RpRs(Rp + Rs) + Rp X2(_)
Re [ZA(w)]= (Rp+ Rs) 2 + X2(w)

(11)

and

R_ X(w) (12)
Im[ZA(w)] ---- (Rp + Rs) 2 + X2(w)

where X(w) is the series-arm reactance function. Fig-
ure 2 is a computer-generated plot of equations (11)
and (12) and illustrates how the shunt-loss element

dRP modifies the behavior of a series circuit. The
egradation in Qu with Rp = 500 can be shown to

be about 1 percent. Near resonance where X(w) <<

Rp + R.s, equations (11) and (12) can be closely
approximated as

P_Rs P_ X2(w) (13)
Re[zA(_)] _ R_+ n_ + (P_ + n_)2

and

R 2

(14)

Element values

R s = 5 ohms
L = 81nil

C = 0.32 pF

200 - Im[ZA], Rp = _ -_ ...
oooo

/--Re[ZA], Rp = 500 ._

° L

"_ I _-"I _ m[ZA]'RD=- 500

-:oor y , f , ,
.800 1.000 1.200

Frequency, GHz

Figure 2. Components of impedance for four-element
resonator.
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Relative to the series arm alone, the resonant re-

actance slope is reduced by the factor [Rp/(Rp+Rs)] 2

and the series resistance is reduced by the factor

Rp/(Rp + Rs), resulting in a net decrease in Qu by

the factor Rp/(Rp+Rs). At the frequencies satisfying

equations (1) and (2), the nonlinear terms in X(w)
in equations (13) and (14) cause the behavior shown

in figure 2; the experimentally determined reactance

slope decreases and series resistance increases, rela-
tive to the values at w0. Both of these effects tend

to produce a Q-factor lower than that defined by
equation (5).

Figure 3 is a Smith-chart plot of ZA(W) that in-
cludes the Qu and QL intercepts defined by equa-

tions (1) and (2). When [X(w)] >> Rp, far
from resonance, the locus begins and ends inside

the chart perimeter. If the frequency sweep is suf-
ficiently wide, additional intersections with the lines

Im[ZA] = Re [ZA] will occur, and either a second pair
of intersections--or no intersections at all with the

lines Im [ZA] = Re [ZA] + RO will occur, depending

on the value of Rp. Thus, the Q-circle procedure can
be in error--or even fail completely.

Element values

R s = 5 ohms

L = 81 nH

C = 0.32 pF

.5_..-- _i,,ercept

2/_ :-

_¢ept

Figure 3. Smith-chart/Q-circle plot of example circuit
impedance components (0.5 2 GHz).

The approach used here to evaluate the error associated with the application of equation (3) to nontriviaI

resonators is to find the true Q from the resonant series-equivalent circuit for comparison with Q as determined

by equation (3). Regardless of the actual circuit topology, it is assumed to be exactly representable at resonance

as a simple series RLC circuit, as shown in figure 4. The equivalent series resistance Req is found by evaluating

equation (11) at wo, and the equivalent series inductance Lea is found by applying equation (8) to equation (12).

From equations (6) and (8), QL is

{ Im[ZA (w)]}w=wo woLR2p

QL = wo 2 Re [ZA(a)0) ] = (Rp + Rs)(RoRp + RoRs + RpRs) (15)

Here, Qu is found by letting R0 = 0 in equation (15).

R 0

vp cos((Oot)

Leq - (Rp + Rs)2

R s Rp
R

eq % + Rs

• )1

C(Rp + Rs)2
Ceq - 2

Rp

Figure 4. Series-equivalent model at resonance.
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Computation of Q by using equation (3) requires an analytical determination of Aw. The direct application

of equation (2) to equations (11) and (12) leads to a quadratic in X(w), which is solved using a power-series

representation for the radical term. The frequencies at which X(w) has the values satisfying equation (2) are

then found without further approximations. This approach avoids solving a fourth-degree polynomial. The

quadratic in X(w) with Im [ZA] positive in equation (2) is

X2(w) R2p X(w) + (Rp + ns)(Rpns + ROns + RoRp) = 0 (X(w) > O) (16)
Ro+P_ Ro+np

which has the solutions

R2p [I ± II _ 4(Rp + Rs)(RpRs + RoRs + RoRp)(Ro + Rp)X = 2(Ro + Rip) n_
(17)

For values of Rs, Rp, and R0 of interest, the second term under the radical is small compared to unity, and

the radical is approximated by a three-term power series in the variable J, which is defined as

J _ 4(np + ns)(Rvns + Rons + RoRp)(Ro + P_) (18)

The series approximation for the radical is

(1 - j)l/2 _ 1 J j2
2 8 (19)

which is accurate to at least 2 percent when J < 0.5. More terms can be carried if greater accuracy is required.

The negative square root in equation (17), denoted by )(2, corresponds to the smallest positive value of

X(w) satisfying equation (2), that is, the positive root nearest resonance and the positive root of primary

interest here. Using equation (19) with (17) gives

x2 = (Rv + Rs)(RvRs + Rons + RoPe) (t_ + R_)2(RvR_ + Ron_ + Rol_)2(Ro + P_) (20)

The only approximation used in the derivation of equation (20) was the series approximation in equation (19).

Because of the symmetry characteristics of equations (11) and (12), the root of the quadratic equation

corresponding to negative Re [Z] in equation (2) (i.e., Xl) is the negative of equation (20). That is, Xl = -)(2.

The bandwidth Aw is found by solving the series-arm reactance equations

1
X2 = w2L - -- (21)

w2C

and

for w2 - Wl -- Aw, which leads to

1
X1 = -X2 = wlL - -- (22)

wlC

Aw = --X2 (23)
L

Following the Q-circle procedure and substituting equation (23) into equation (3) gives the measured QL (i.e.,

OL)as

0L = w0L
x2 (24)

f_

T



It can be seen upon combining equations (20) and (24) that (_L differs from QL in equation (15). The

fractional difference between these Q-factors is found from equations (15), (20), and (24) as

AQL _ C2L -- QL

QL - QL

(Rp + ns)(Rpns + Rons + RoRp)(Ro +np)

R 4 + (Rp + ns)(Rpns + Rons + RoRp)(Ro + Rp)
(25)

For heavy external loading (large _3c), R0 >> Rs.

This simplification and assuming that Rp >> Rs

permits equation (25) to be approximated as

AQ____L_ (RolRp)+ (RolP_)2 (26)
QL 1+ (R0/R_) + (R0/P_)2

The error in Qu is found by setting R0 to zero in

equation (25):

AQ_._..._u_, (ns/Rp) + (ns/np) 2 (27)
Q_ 1 + (ns/Rp) + (ns/Rp)2

Thus, when R0 >> Rs the fractional error in (_u is

much less than the error in (_L--a fact that can be

used to advantage when using the Q-circle method.

An alternative to using equation (24) and the QL

intercepts is therefore to measure _)u and _c and

compute QL from

QL-- 1+_c (28)

To the extent that _c is accurately measured, the

error in QL is that associated with Qu, given by
equation (27), as compared with equation (26) for

Substituting equation (15) into equations (26)

and (27) with R0/Rp, Rs/Rp, and Rs/Ro << 1 gives
the approximations

AQ----b-L_ - w°L (29)
QL QL_

and
AQu woL-- _ (30)
Qu QuoRp

in which Quo is the series-arm Q. These equations

are useful for assessing the potential measurement
errors associated with known element values.

Another interesting observation can be made

upon computing the degradation of Quo by Rp,

AQ_0 _ Qu0- Q_ Q_
- 1 - -- (31)

Q_0 Qu0 Q_0

which is found from equation (15) with/to = 0 as

AQ,_o R_/Rp
Quo 1 + (Rs/Rp)

(32)

A comparison of equations (32) and (27) reveals that

the fractional error in measuring Qu is approximately

the same as the fractional reduction of Quo by Rp.

For the element values used in figures 2 and 3,

AQo/Quo and AQu/Qu are about 0.01 and AQL/Q L
is about 0.091.

It was this disparity between (_L and (_L that pro-

vided the initial motivation for this work. A Hewlett-

Packard (HP) 8510B vector network analyzer was
automated to perform the Q-circle routine and pro-

vided a level of repeatability unobtainable with man-

ual procedures. A systematic difference between (_L

and QL as large as 10 percent was observed in a va-
riety of heavily loaded microwave resonators. This

disparity might have been previously overlooked, or
obscured, because of the inaccuracies associated with
manual measurements.

Example 2: Distributed Circuit

The input impedance of a lossy, short-circuited
transmission line is

ZB(g ) = ZBO tanh(c_g + j_3g) (33)

Figure 5 plots the computed components of impedance
of a short-circuited, precision-coaxial 30-cm air line,

with the loss parameter (0.0065 dB/in, at 2.6 GHz)

based on measurements by the HP 8510B vector net-

work analyzer. Figure 6 plots the impedance compo-

nents of a state-of-the-art, shorted duroid microstrip

transmission line (Rogers RT/duroid 5870) having

the same electrical length as the air line. Both plots

show multiple resonances and the conditions that

produced Q-circle error in the lumped element case:

Re [ZB(w)] is frequency dependent and Im[ZB(w)]

does not satisfy equation (9). As in the lumped

element case, Re [ZB(w)] increases away from reso-

nance, which acts to make (_u < Qu; in contrast,

Im[ZB(w)] results in a reactance slope measured be-
tween the intercept points that exceeds the reso-
nant value. It will be shown that the former effect



dominatesQu in a transmission-line resonator, that

Qu < Qu, and that 0L can in some situations exceed

QL.

...... Re[ZB(a})]

-- Im[ZB(O))]

Air line parameters [

a = 0.0065 dB/in, at 2.6 GHz IeR = 1.000

6O

!
-60 J

0 1 2

Frequency, GHz

Figure 5. Components of impedance for 30 cm x 7 mm short-
circuited air line.

...... Re[ZB(O))]

-- Im[ZB(CO)]

Microstrip parameters

Substrate: RT/duroid 5870
Substrate thickness: 10 mils

eRO: 2.2
Line width: 28 mils

Line length: 8700 mils

iLoss tangent: 0.0012

-60
0 1

Frequency, GHz

Figure 6. Components of impedance for short-circuited
microstrip line.

Figures 5 also suggests that the error in measuring

_)L might increase with the order of the resonance,
which is shown to be true. An examination of figure 5

reveals that QL, as defined by equation (3), can be

measured with the air line. The term Re [ZB(w)] in-
creases from 0.194 ohm at resonance to 0.501 ohm at

the upper intercept point; the resultant error in QL

is less than 0.6 percent. In the microstrip line case,

Re [ZB(W)] increased considerably from the resonant
value and is not negligible with respect to R0. It

appears that this effect will, at least initially, reduce

the error in QL; however, an analytical expression
was not derived for this case.

The analysis of the distributed-element case par-

allels that applied to the lumped element case: the

Q-factor computed from equation (15) is compared
with that computed from equation (3). Using an

identity for hyperbolic functions having complex ar-

guments and recognizing the fact that/3g = wr allows

equation (33) to be expressed as

_, sinh[2 a(w) g] + j sin(2wT)

zBiw)= c-- shE (34)

for a nondispersive line, where 7- is the one-way

propagation time. The attenuation constant c_(w)
is assumed to be constant in the vicinity of each

resonance, but increasing stepwise with the order of

resonance. As a consequence, the derivatives of a(w)

with respect to w are zero around each resonance.

The reactance slopes of ZB(W ) evaluated at the

the nth ),/2 resonance, where wT- = nTr, is

_wIm[ZB(W)] _=nr/r-- ZBO 7-S -= cosh 2 [a(w) g]
(35)

and

ZBO sinh[2 a(w) g] w=nrlrRe[ZB(w)],_=n_r/r = 2cosh2[a(w )g]

(36)

The unloaded Q defined by equation (15) is

Qu = sinh[2a(w) _=nTr/r

nTr

sinh[2 a(w) gI
(37)

7



W]_en2_(co)e<< 1, thensinh[2a(co)g- 2a(co)g
andequation(37)canbecloselyapproximatedas

7r /3 (38)QU --'

At a fixed frequency, Qu is therefore independent of

the line length and/or the order of the resonance.
The unloaded Q that would be measured using

equation (3) is found by applying equation (1) to
equation (34) with w = (nTr/T)+ (Aco/2), which leads
to

sinh[2 a(co) g] = ]sin(Aco 7)[ (39)

Equation (39) is solved for Aco, which is used in

equation (3) to find

coo _ COOT (40)
(_u- _ sin_l{sinh[2a(co) g]}

The ratio of Qu to Qu is, from equations (37)

and (40),

_2.._.Eu_ n rr/ Q u (41)
Qu -- sin-l(n7r/Qu)

Since Qu in equation (41) is essentially indepen-

dent of n, higher order resonances (n > 1) at a fixed

frequency produce greater errors in measuring Qu ac-

cording to equation (38). This can be attributed to
the fact that Aco becomes a larger fraction of the

pole-to-pole spacing of equation (34) that decreases

with increasing n. However, the error in Qu becomes

practically significant only when nrc/Qu > 0.25, for

which equation (41) is 1 percent low.

The value of 0L cannot always be found by the

Q-circle method, as demonstrated by figure 3 with

Rp = 250, and must be computed by using equa-

tion (15) or (28). Figure 5 represents a case for which

(_L can be found since equation (2) can be satisfied.

In this case, Re [Z(co)] is entirely negligible compared

with R0 over the full QL intercept bandwidth.

Here, QL is found from equations (15) and (35)

with a(w) = 0 and is given as

QL - W°ZBo-------T nTrZBo (42)
2Ro 2Ro

and _)L is found by determining the Aw for which

RO ZBO sin(2COT)= -- ZBO tan(cot) (43)
1 + cos(2cor)

when w = (nTr/r) + (Aco/2), as indicated by the

vertical dashed line in figure 5 (n = 1; R0 = 50).

This is found to be

which is used in equation (3) to get

(44)

In contrast to (_u, (_L > QL since the only error

in equation (45) was due to the slope measurement,

which was larger than the correct, or resonant, value.

Equation (4--_ is applicable only if Re [ZB(co)] << R0

at the intercept points. Subject to this restriction,

equation (45) is independent of the absolute value of

QL, which can be made arbitrarily large by increasing

n in equation (42). For example, with n = 10 and

Ro/ZBo = 0.5, QL = 31 and 0L is 8 percent high.

Example 3: Dual Resonance

The circuit of figure 1(c) has two resonances, with

the desired resonance an impedance zero and the ad-

jacent resonance an impedance pole. The presence

of the adjacent complementary resonance can signif-
A

icantly affect the value of Qu, to the point that a

measurement by equation (3) is not possibl e . The
additional reactive element results in a fourth-order

impedance function, as with the circuit of figure l(a);

however, the equation that arises from equating the

real and imaginary parts of Zc(oV) in equation (1)

is not easily reducable as was the case with ZB(co),

corresponding to figure l(b). Therefore, this case is

analyzed by essentially numerical methods. A com-

puter model is evaluated to determine the Q-factors

computed by equation (3) for comparison with those

computed from equation (15).

The circuit of figure l(c) has the impedance
function

ns + j[coL - (1/coC)]

Zc(co) = 1 + (Co/C) - co2LCo + jcoRsCo
(46)

For mathematical simplification, define the singular

frequencies of equation (46) as

2 1 (47)
cosn -- LC

where the numerator is purely real, and

2 Co + C (48)
cosd ---- LCCo

where the demoninator is purely imaginary. These

are not the exact series or parallel resonant

n. (45)QL = 2tan_ 1(Ro/ZBo)
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Smith-chart display

1

...... 10 x Frequency sweep
1

.5 ,,"

...... 10 x Frequency sweep
1

...... 10 x Frequency sweep
1

...... 10 x Frequency sweep

au

996.5

994.6

907.1

Method
fails

u

999.7

997.1

962.3

757.9

Figure 7. Theoretical Z- and F-plane resonance characteristics for circuit in figure l(c) with complementary resonance
K 3-dB semibandwidths above Wsn.



frequencies--atwhichZc(w) is purely real---except

when Rs is zero; however, it has been observed that

the values computed by equations (46) and (47) are,

for practical purposes, the same as those exhibited

by the model over a wide range of parameters when

Quo > 100. In other words, the deviations of Wsn

and Wsd from the actual series and parallel resonant

frequencies are small compared with the semiband-
width of the series arm (Wsn/Quo) alone.

To facilitate model evaluation, it is desirable to

derive a relationship between Co and the spacing

between the series and parallel resonances, 5o;. It
follows from

502 -_ Wsd -- Wsn (49)

and some manipulation of equations (47) and (48)
that

5w = Wsn [v/l+ (1/LCOW2n) - 1] (50)

which is normalized to the series-arm 3-dB semiband-

width, Aw/2Quo, and the result is defined as K:

K - - 20 o 1+ (C/Co) - 1 (51)

Solving equation (51) for C/Co gives

Coo- 2Q_o+1 -1_ Q_o (Quo <- 0.1) (52)

The L, C, and Rs in figure 1(c) were selected

to give a series-arm Qu (i.e., Quo) of 1000, and Co
varied in increments computed by equation (52) to

locate the pole K semibandwidths away from the

zero. The behavior with respect to K of the Z-plane

components and the corresponding F-plane locus is

cataloged in figure 7, and all Z-plane data are plotted

together in figure 8 for K = 100, 30, 10, and 3.

_0

i

K=3

•.:::::::::::::: .................... :_--"i_'- "_"

j/-'j ......... _¢[z_(o,)j
K = 3 _ -- Im[ZB(°)]

.999 1.000 1,001

Frequency, GHz

Figure 8. Components of impedance with adjacent singularity.
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In all cases, Re [Z(w)] is not symmetrical around

the frequency at which Im [Z(w)] = 0. With g < 10,

it is clear from figure 8 that relative to K = 100,

the resonant frequency is shifting upward (produc-

ing a larger Req) and the reactance slope is decreas-
ing (corresponding to a smaller Lea) as defined by

equation (8); Qu is unquestionably lowered by the

adjacent pole. For K -- 3, resonance detuning is

about 25 percent of the 3-dB semibandwidth, Leq is

increased by 15 percent, and the resonant reactance

slope is decreased by 13 percent. Furthermore, this
extreme case could not be measured by equation (3)

since there is no intersection with Re [Zc(w)] when

Im [Zc(w)] is positive.

O

O

1.0

.9

.8-

1

--Reactance-slope method
.... Q-circle (intercep0 method

I I I I I

3 7 10 30 100

K

Figure 9. Unloaded Q determined using intercept bandwidth
and phase-slope methods with adjacent secondary reso-
nance K 3-dB semibandwidths away.

The Q-factors defined by equations (3) and (15)

were computed from linearly interpolated, computer-

generated impedance data for the pole-zero sepa-
rations listed above. The reactance slope was ap-

proximated over the center 10 percent of the 3-dB
bandwidth, and the Q that was computed from

equation (15) was taken as the correct value. The
K = 100 case is essentially the same as K = cx)

and indicates that the computational accuracy is bet-
ter than 1 × 10 -3. These results are plotted in fig-

ure 9, where it can be seen that the difference in Qu

from equations (3) and (15) is about 3 percent when

K = 10 and 0.3 percent when K = 30; thus it is ad-
visable to ensure that K is 30 or more before using

equation (3).

Discussion of Results

The Q-circle method for experimentally determin-

ing Q from measured impedance data was shown to
be in error for three resonant circuit configurations



morecomplexthana simpleseriesor parallel RLC
circuit. Two of these circuits were chosen for their

ease of analysis, and the third was evaluated numer-

ically with a computer model. Q-circle measurement
error was shown to be a consequence of the com-

ponents of impedance not satisfying the conditions

necessary for _0/Aw to exactly equal the Q-factor.
Lumped and distributed circuit examples were cited;

and AQ/Q, the fractional difference between a_o/Aw
and the true Q-factor, was determined.

From a practical standpoint, errors in (_u were

shown to be insignificant unless (1) the lumped cir-

cuit Q-factor was low (Qu < 100), (2) the charac-

teristic impedance of a transmission-line resonator

was less than the source impedance and/or the res-

onance of very high order (n >> 1), or (3) a com-

plementary resonance was located within thirty 3-dB
semibandwidths of the desired resonance. However,

it was demonstrated that the Q-circle method can

produce very large errors in Q, particularly in QL,
and even fail completely in some situations. The fac-

tor AQ/Q was shown to vary inversely with the true

Q-factor and, therefore, to be proportional to the in-
tercept bandwidth. That is, the lower the Q-factor

the greater the difference between wo/Aw and the

true Q-factor.
Numerical evaluation was applied to a four-

element circuit having a closely adjacent comple-

mentary impedance singularity near the desired reso-

nance, as in a piezoelectric-crystal equivalent circuit.
The radical distortion of the impedance characteris-

tic relative to a simple RLC produced a 3-percent er-

ror in (_u for a singularity ten 3-dB semibandwidths

away from the desired resonance.

Overall, if a disparity was observed between Qu as

determined from equation (3) and that as computed

from equation (15), or if a disparity was observed be-

tween 0L and the value computed from equation (28)

with (_u and _c, it was concluded that the latter re-
sults from both cases should be considered the more

accurate.

Concluding Remarks

This report has considered the errors that ac-

company the application of the "Q-circle" method
to resonators that are more complex than the sim-

ple resistance-inductance-capacitance (RLC) circuit,
for which it was derived and is exact. The method

is based on determining the ratio of the center fre-

quency to the "intercept bandwidths" derived by the

Q-circle method.
Two lumped circuits and a distributed circuit

were analyzed using both symbolic and numerical
methods. It was concluded that the Q-circle method

can produce large errors or even fail completely,

especially when measuring the loaded Q, because

the impedance components of complex resonators

can differ significantly from those of simple RLC
resonators.

NASA Langley Research Center
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